
Abstract. A procedure is developed to establish the
ground-state multiplicities for atoms with any number
of electrons. The procedure is applied to two- and three-
electron systems. The results are that all neutral and
positive two- and three-electron atoms have singlet
(S � 0) and doublet (S � 1=2) ground states, respectively.
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1 Introduction

Determination of ground-state multiplicities of atomic
systems has long been a problem of interest [1]. It is
widely accepted that the ground states of helium and
other isoelectronic atoms (such as Hÿ, Li�, and Be2�)
are singlet states. Support for this comes from experi-
ment [2] and extremely large variational calculations [3±
6]. Using the method of variance minimization, Klein-
dienst and Emrich [7] calculated very precise upper and
lower bounds for the lowest singlet states of two-electron
ions with atomic numbers between 1 and 10. Kleindienst
and Degroot [8] followed this with a similar calculation
for the lowest triplet states of those systems. Their
results established that the singlet states are lower in
energy than the triplet states for those systems.

This paper is concerned with a rigorous theoretical
approach ± rather than a computational approach ± to
this problem. The basic idea is as follows. If an upper
bound to a state of given multiplicity is lower in energy
than lower bounds of states with other multiplicities, then
the former is the ground-state multiplicity of the system.

Our results support the ®ndings of Kleindienst and
coworkers and show that the same result holds for all
atomic numbers. We also look at three-electron ions in
detail and show that their ground states are of doublet
multiplicity for all atomic numbers.

2 General relations

A rigorous upper bound to the ground-state energy,
which appears similar to that of ®rst-order perturbation
theory, can be derived [9]. Let the electronic Hamilto-
nian be H � H0 � H 0, where H0 is the sum of the
electronic kinetic energy and nuclear attraction terms
and H 0 contains the interelectronic repulsions. For an
atomic system, let wn and kn be the nth eigenfunction
and eigenvalue of H0. Then, if K1 is the lowest eigenvalue
of H , we have (by the variational theorem)

K1 � wnjH jwnh i � wnjH0 � H 0jwnh i
� wnjH0jwnh i � wnjH 0jwnh i
� kn � wnjH 0jwnh i : �1�

This gives an upper bound to K1.
Now consider a particular spin subspace, with spin

quantum number S. Let Sk1 be the lowest eigenvalue of
H0 and SK1 be the lowest eigenvalue of H in the spin-S
subspace. Since the electron repulsion operator is posi-
tive de®nite, we know that

Sk1 <
SK1 : �2�

This gives an explicit lower bound to SK1.
If we could show that kn � wnjH 0jwnh i < Sk1 we

would know that the ground state does not occur in the
spin-S subspace, for we would have

K1 � kn � wnjH 0jwnh i < Sk1 <
SK1 : �3�

The eigenstates of the full Hamiltonian need not be
known in this analysis. All terms are easily calculable
from the exactly known hydrogenic states.

We now investigate the relationships in Eq. (3) with
a general Hamiltonian.

Let X be the spatial (spin-free) Hilbert space, F be
the full (spatial plus spin) Hilbert space, S be the spin-S
subspace of F, and A be the antisymmetrized subspace
of S. For a symmetric spin-free Hamiltonian, H , it is
well known that the eigenstates in X can be used to
generate the eigenstates in A; however, we must be sure
that all the eigenstates in A can be generated. To show
this, we present for completeness and clarity some simpleCorrespondence to: J.C. Schug
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and previously known results which use the fact that
a symmetric Hamiltonian, H , and the antisymmetrizer,
A, commute (i.e. AH � HA).

Theorem 1. Given a symmetric spinless Hamiltonian, H ,
all its eigenstates in A can be generated from its
eigenstates in X.

Proof.We establish a chain of lemmas stating that all the
eigenstates in one space can be generated from the
eigenstates in another space ± thus we generate eigen-
states in A by cycling through the spaces X, F, S,
and ®nally A itself in that order. Going from X to
F requires writing the eigenstates in F as a linear
combination of the eigenstates in X (plus orthonormal
states added for completeness) multiplied by linear
combinations of orthonormal spin functions. Going
from F to S and then from S to A results from the
fact that A is a subspace of S, which is in turn a
subspace of F. Thus, we are only eliminating solutions
outside the subspaces.

Theorem 2. For a spin-free Hamiltonian, when eigen-
states in X are used to generate eigenstates in A, the
energy eigenvalue, k, is the same for both problems.

Proof. Using theorem 1, we can write any eigenfunction
as linear combinations of degenerate spin eigenfunctions
and degenerate spatial eigenfunctions in X with eigen-
value k. Omitting indices for simplicity and assuming
that A�PQ

P
U� is normalized, we have
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Thus the energy eigenvalue is equal to the eigenvalue
of any of the degenerate spatial components of the
wavefunction. An identical argument shows that the
spin eigenvalue is equal to the common spin eigenvalue
of the spin components of the wavefunction.

3 Two-electron atoms

The spatial and spin components of two-electron
wavefunctions are separable; therefore, we can limit
our attention to symmetric spatial functions when
working in the singlet (S � 0) subspace (the spin
functions are antisymmetric) and to antisymmetric
spatial functions when working in the triplet (S � 1)
subspace (where the spin functions are symmetric).

We know that k1 � ÿZ2, which is the sum of the ei-
genvalues of two 1s orbitals (we can ignore the spin part

by theorem 2), and w1jH 0jw1h i � 1s1sjH 0j1s1sh i � 5Z=8.
Thus,

K1 � ÿZ2 � 5Z=8 :

We also know that H0 gives lower bounds to the true
eigenvalues of H0 � H 0 since H 0 is positive de®nite. For
the triplet (S � 1) subspace, we know that the sum of the
eigenvalues of the 1s and 2s orbitals (ÿZ2=2ÿ Z2=8) is
a lower bound to the lowest eigenvalue. If K1 <
ÿZ2=2ÿ Z2=8, we then have that the lowest eigenvalue
in the whole Hilbert space is less than all the eigenvalues
in the triplet subspace, and must therefore belong to the
singlet subspace.

We do not know K1, but we know an upper bound:
K1 � ÿZ2 � 5Z=8. Thus, to show that K1 is not in the
triplet subspace, we must ®nd when 0k1 � ÿZ2 �
5Z=8 < ÿZ2=2ÿ Z2=8 � 1k1 is satis®ed. A little manip-
ulation reveals that this is true when Z > 5=3. This
shows that for Z � 2, all two-electron atoms have a
singlet ground state. For Z � 1, Hill [10] proved that
only one bound singlet state exists and that there are no
bound triplet states; thus, the ground state for Hÿ is a
singlet state. Combining Hill's result with ours shows
that all two-electron atoms have singlet (S � 0) ground
states.

4 Three-electron atoms

For three-electron atoms, there are again only two spin
states: the doublet (S � 1=2) and the quartet (S � 3=2).
Unfortunately, the wavefunctions can no longer be
factored into products of spatial and spin components.
A complete set of orthonormal spin eigenfunctions is
[11]

S � 1=2 1=
p
6�2aabÿ abaÿ baa� 1=

p
2�abaÿ baa�

1=
p
6�2bbaÿ babÿ abb� 1=

p
2�babÿ abb�

S � 3=2 1=
p
3�aab� aba� baa� aaa

1=
p
3�bba� bab� abb� bbb :

To ®nd the lowest energy eigenvalue of the repulsionless
Hamiltonian in the spin subspaces (for use in Eq. 3), we
must know which one-electron orbitals are used in the
wavefunction. By theorem 2, we know that the energy
eigenvalue is independent of the spin parts; however, the
antisymmetrizer annihilates certain products of spin and
spatial functions.

If a, b, and c denote di�erent orthonormal spatial
orbitals and Q denotes a spin eigenfunction, then in the
doublet space A�aaaQ� vanishes, and both A�aabQ� and
A�abcQ� are nonzero. In the quartet space, A�aaaQ� and
A�aabQ� both vanish; only A�abcQ� survives. Thus, the
lowest eigenvalue for the doublet subspace, 1=2k1 �
ÿZ2=2ÿ Z2=2ÿ Z2=8 � ÿ9Z2=8, comes from the 1s1s2s
spatial term (or equivalently replace 2s with a 2p orbital)
and the lowest eigenvalue for the quartet subspace,
3=2k1 � ÿZ2=2ÿ Z2=8ÿ Z2=8 � ÿ6Z2=8, comes from
the 1s2s2p spatial term.

To show when (if ever) Eq. (3) holds, we work with
the function 1s1s2saba, which is a solution of the re-
pulsionless Hamiltonian in the doublet subspace and
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gives a nonzero function when it is antisymmetrized. In
Eq. (3), we require the integral

wnjH 0jwnh i � A 1s1s2saba� �j1=r12 � 1=r13h
�1=r23jA 1s1s2saba� �i :

An upper bound will su�ce for this. We therefore
neglect the exchange terms and use

h1s1s2sj1=r12 � 1=r13 � 1=r23j1s1s2si
� Z�5=8� 17=81� 17=81� � Z�677=648� :

Substituting our values into Eq. (3), we obtain

K1 � 1=2k1 � w1jH 0jw1h i
� ÿ 9

8
Z2 � 677

648
Z < ÿ 6

8
Z2

� 3=2k1 <
3=2K1 :

Rearranging, we ®nd that the middle inequality is true
when Z > 677=243. Thus, we can conclude that all three-
electron atoms with Z � 3 have doublet (S � 1=2)
ground states.

5 Conclusion

This same procedure can be extended to any number of
electrons and is very simple (although tedious for many
electrons) because it relies on the hydrogenic eigen-

functions only. This simplicity, however, makes the
bounds on the eigenvalues very poor. It is expected
that as the number of electrons increases, the generality
of the method will su�er because of this. Indeed, for
the four-electron case, this method shows only that
atoms with Z � 5 (i.e. positively charged) have S � 0
ground states, and a speci®c calculation must be done
for Z � 4 (neutral beryllium). This is because the
lowest singlet and triplet states are relatively close in
energy [2].
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